中央空调水系统的用水通常分为两类,即未经过任何处理的自来水和软化水。由于冷却水用水量大,一般都补充自来水。水中对设备产生影响的主要因素为硬度、碱度、微生物、pH值、Cl-、氧含量等。自来水因地区不同而水质变化较大,在水的循环过程中,硬度和碱度不断被浓缩,是造成结垢的主要因素,而Cl-、低pH、溶解氧、生物粘泥是造成腐蚀的罪魁祸首。
按照我国有关规范,冷冻水要求补充软化水。而对于软化水而言,失去了结垢性离子Ca2+、Mg2+等,没有结垢问题,同样设备也失去了保护性结垢层,其腐蚀性增强,从而加重了腐蚀穿孔现象。这个规范要求是否合理,有关部门正在论证。
同时冷却塔又是微生物和藻类滋生的场所,合适的温度、充分的氧气和养分、充足的日照,过度滋生的微生物进入循环水系统,造成系统堵塞和腐蚀,不仅增加了额外的运行费用,同时也缩短了设备的使用寿命。
1冷却循环水系统中存在的问题及危害
1.1水垢问题悬浮物和生物膜及水垢混合在一起,在热交换器列管表面形成沉积物,从而降低了冷凝器的热交换效率。研究表面,1mm水垢就能造成空调机组效率下降45%。
热交换器上0.25mm厚的污垢或者结垢层,将降低热交换效率,增加能耗10%。下式可以用来计算一个冷却循环水系统一年的能耗成本:
冷却系统吨位×吨水电耗×负载系数×每年工作时间×每度电成本=每年能耗成本
例如,400冷吨×0.65kw/冷吨×0.7负载系数×2500小时/年×0.6元/kwh=27.3万元/年
如果热交换器上的污垢厚度为0.25mm,运行一年的电费将增加2.73万元。
而且,冷却系统本身产生颗粒物,例如腐蚀产物、无机物沉淀(铁的氧化物、硬度盐类等等)、微生物宿主、有机化合物的聚集体和其它的物质,会加速腐蚀和腐蚀物的形成。
1.2生物粘泥今天每一个冷却塔系统都会考虑不断增长的生物粘泥问题。ASHRAE导则12-2000中说道,冷却塔系统最基本的处理建议是控制和防治生物粘泥,而且指出控制生物粘泥的最简单的成功方法是保持系统清洁。ASHRAE2000年9月号(44-49页)中这样写道,“生物粘泥增长加剧的适宜条件包括温度77-108华氏度,结垢问题存在,有沉淀物和生物膜…通常情况下,在多种复杂的微生物群落中滋生猖獗,因为他们需要从周围环境中获得养分和保护。”显而易见,维持低含量的悬浮颗粒浓度,就减少了生物粘泥生长的空间和养分。同时需要合适的杀生程序提高生物粘泥的控制效率。
生物粘泥导致的热交换损失甚至大于无机水垢造成的热交换损失。美国CTI(冷却塔技术研究所)的报告显示,生物膜(粘泥)的热传导率只有碳酸钙垢的1/5。
1.3腐蚀问题一种局部的腐蚀,通常发生在储罐和输水系统中,有高活性的局部阳极电位引起的。腐蚀是离子浓度不对等或者氧浓度差异所致。经常发现在高温区、晶格缺陷处、切削部位、表面划痕或裂纹处。点蚀是金属损坏的最常见因素。一个穿孔能够毁掉一台关键的热交换器,从而能够导致整个工厂停产。
厌氧菌会在生物膜深处氧稀缺的地方繁殖。一些细菌能够够代谢不锈钢中的碳、一些细菌能够生成硝酸、硫酸或者有机酸,从而加速腐蚀。细菌菌群下面潮湿的表面氧的消耗,会导致形成“微分通风电池”,从而引起电流腐蚀。水系统中超过70%的腐蚀是由微生物加速或者导致的。微生物,象细菌,在所有腐蚀方面比以前认为的作用更大。
1.4军团菌问题军团菌普遍存在于有水的环境中,军团菌本身存活能力不强,冷冻与加热均能杀死该菌。它的存活、繁殖温度条件为20-58℃。为了防治冷却塔传播军团菌,许多国际或以疾病防治中心名义,或以冷却水协会的名义发布了“冷却塔防治军团菌守则(或指南)”。他们的共同点就是要消除军团菌赖以生长的污垢、沉渣与粘泥,要求每年(每季节)清洗填料,系统用化学杀菌。对于疑有军团病发生的情况,则要求加强清洗杀菌工作。由于清洗冷却塔及循环系统十分繁琐,费时费工。检测军团菌的方法还不够灵敏、精确,所以至今没有一个国家对冷却塔作出强制性操作规范。美国和新加坡等则制定了冷却塔军团菌指导性文件。
冷却塔与空调系统是否有利于预防军团菌与设备设计关系密切,一些不宜于机械清洗填料的冷却塔应予以改造或更换。适宜于冷却塔杀菌的季铵盐、唑啉酮类杀菌对于杀灭军团菌已被证实无效。清理军团菌滋生的场所是防治军团菌的关键。
2冷却循环水常用的处理方法
2.1结垢控制–添加阻垢剂
冷却循环水系统中通常会沉积几种不同的水垢,从而迫使要采取几种不同的控制方法:沉积抑制剂控制目的是增溶剂预防水垢析出,也是晶体修饰剂改变沉积物的自然状态而不会粘附在系统内表面。分散剂和表面活性剂是荷电分子,它们吸附悬浮固体颗粒,使它们相互排斥,使固体颗粒保持在较小的颗粒状态。酸、磷酸盐和水溶性聚合物是典型的无机垢抑制剂,冷却水中的钙硬度较高时结垢控制尤其关键。
另外的方法就是将过饱和的沉积物从水中取出一部分,这样就防止了沉积物的析出而实现阻垢的目的。比如部分软化的方法或者电解除垢的方法。
2.2腐蚀控制–添加缓蚀剂腐蚀是一个电化学过程,腐蚀就是金属从阳极电位向阴极电位的电子转移过程中发生的氧化。阴离子缓蚀剂减少阴极金属表面的可接触面积,阳离子缓蚀剂则是减少可接触的阳极表面面积。有时候同时需要这两种类型的缓蚀剂来抑制腐蚀。磷酸盐、锌盐、钼酸盐和聚合硅酸盐是低碳钢的缓蚀剂,而有机氮基复合物(偶氮化合物)则是铜质材料的缓蚀剂。
或者是通过水中矿物质的特性,控制碳酸钙处于过饱和的平衡状态,让少量的碳酸钙晶体析出在设备和管道内表面,从而中断这个腐蚀的电化学过程,达到控制腐蚀的目的。
2.3微生物控制–添加杀菌灭藻剂氧根自由基(OH)、双氧水(H2O2)和次氯酸盐(漂白剂,OCl-)、以及lv气(Cl2)都是氧化剂,它们能够杀死微生物。这几种化合物中,最容易,也最安全。一般用13%溶液来破坏微生物。双氧水是液体状态,皮肤接触后容易引起烧伤。臭氧、双氧水和氢氧根自由基也可以用来控制微生物滋生。所有这些物质都是强氧化剂。典型的微生物抑制化合物包括氯和溴化合物,或者臭氧,也包括几种有毒性的有机物,例如季铵盐、甲醛、有机硫化物、溴基有机物等等。注:四氨基化合物,与其说是杀菌剂,不如说是抑菌剂(比如,抑制微生物滋生,但是没有杀死微生物)。表面活性剂也帮助杀菌剂减少生物膜。也可以通过电解水本身产生上述氧化性杀菌物质,实现微生物控制。
2.4添加化学药剂处理中央空调冷却水存在的问题传统的化学药剂处理,就是使用标准的阻垢剂和缓蚀剂,交互使用两种非氧化性杀生剂来控制微生物污染。美国冷却塔研究所(CTI)建议交替使用溴和氯来控制军团菌。这种处理技术对于中央空调系统来说,主要存在的问题有(1)中央空调循环水系统通常比较小,一般没有专业的水处理工程师来管理,添加药剂不能根据补加水水质波动及时调整,不能使得药剂发挥到更好水平;(2)持续的剩余卤素的存在,导致管板上形成许多腐蚀结节;(3)在北方高硬度水质地区,使用化学药剂处理技术,冷却水浓缩倍率一般较低,造成大量新鲜水浪费;(4)化学药剂排入市政污水管网系统,造成市政污水处理系统负荷增加。
3冷却循环水电解水处理技术
3.1电化学水处理方法
电化学水处理方法是以电化学的基本原理为基础,利用电极反应及其相关过程,通过直接和间接的氧化还原、凝聚絮凝、吸附降解和协同转化等综合作用,对水中的硬度、重金属、悬浮物、胶体、细菌、藻类、色度、硝酸盐等污染物有效去除。由于电化学无需向水中投加药剂、水质净化效率高、无二次污染、使用方便、易于控制,在工业水处理、生活污水处理和回用、饮用水净化等方面,表现出巨大的发展潜力。
水(H2O)是最基本的电解质,液态的水可以发生电离反应生成H+和OH-:
在直流电流的作用于下,两极会发生化学反应,这种过程称之为电解。电解是将电能转化成化学能的过程。电解水处理过程中所发生的化学变化与水中的化学组成、物质浓度、电极材料等因素密切相关,两极上析出物质的量和通过的电量成正比。
在水处理中,针对具有不同化学组成的水质条件,通过改变不同的电极材料、电极布置方式、反应室结构、电极作用过程和催化氧化还原措施等,可以获得不同的电解净水效果。
电解水处理的特点:
电解是在外部电流作用下一个电子导体(特种金属制成的电极)和一个离子导体(水中的电解质)之间发生的系列化学反应。
电解制造了一个氧化反应和还原反应分别进行的环境。
电解过程可以控制和测量,从而可以精确预知处理后水的水质。
不用任何化学药剂,因此没有任何污染。
环境友好。
处理效果不随被处理水的条件或组成而发生变化。
被批准用于饮用水的处理。
3.2 EST工作原理
EST通过旁流处理的方式,取一定比例的冷却循环水流过EST反应室,以便拿掉适当的矿物质和杀死细菌,然后回到冷却塔中。通过精确的分析测试,通过EST的结垢矿物质含量得到了可以看得见的降低。在EST中发生的这种实际的化学反应,区别于任何一种其他的机械式和电磁式的处理方式。
通过电解,水中的矿物质在EST反应室内壁上沉淀出来并通过机械装置去除,这就是EST的工作原理。反应室中维持一定的工作电流。结果是,在阴极(反应室内壁)附近形成高浓度的氢氧根,这种升高的pH环境(pH大约为13),让易结垢的矿物质预先结垢,并从水中析出。实际上,阴极附近局部的高氢氧根浓度形成的化学环境,和用石灰处理形成的冷石灰软化环境类似。冷石灰软化处理主要用来给水去除钙、镁和硅。
与此同时,电流也将一小部分的氯离子转化成游离氯,部分氢氧根氧化成微量臭氧。这两个产物提供了杀生效应,结合安培电流及局部高的和低的(阳极)pH区域,维持了EST之外的一个事实的消毒环境。
根据水蒸发浓缩过程中带来的水中碳酸钙饱和指数(LSI)的变化,将碳酸钙控制在过饱和状态,在管道和设备内壁形成很薄的一层保护层,从而保护管道和设备不和冷却水中的溶解氧接触,防止腐蚀现象的发生。同时,EST可以除掉冷却水中的铁、铜离子以及其他重金属离子,随排垢时一起排出冷却循环系统之外,而这些离子是加速腐蚀的罪魁祸首。